Universidade Federal do Recôncavo da Bahia Centro de Ciências Agrarias Ambientais e Biológicas Bacharelado em Biologia

Lincon Mathias Andrade Rocha

DESENHO DE PRIMERS SSR (SIMPLE SEQUENCE REPEAT) PARA REGIÕES GENÔMICAS DO TOMATEIRO (SOLANACEAE) VISANDO A TRANSFERIBILIDADE PARA *Physalis angulata L.* (SOLANACEAE)

Cruz das Almas-BA

2019

Lincon Mathias Andrade Rocha

DESENHO DE PRIMERS SSR (SIMPLE SEQUENCE REPEAT) PARA REGIÕES GENÔMICAS DO TOMATEIRO (SOLANACEAE) VISANDO A TRANSFERIBILIDADE PARA *Physalis angulata L.* (SOLANACEAE)

> Relatório apresentado como prérequisito para a conclusão do Componente Curricular GCCA335-Trabalho de conclusão de curso II, do Curso de Bacharelado em Biologia, do Centro de Ciências Agrárias, Ambientais e Biológicas (CCAAB), da Universidade Federal do Recôncavo da Bahia, UFRB.

Orientadora: Prof^a. Dra. Edna Lobo Machado

Cruz das Almas-BA 2019

Lincon Mathias Andrade Rocha

DESENHO DE PRIMERS SSR (SIMPLE SEQUENCE REPEAT) PARA REGIÕES GENÔMICAS DO TOMATEIRO (SOLANACEAE) VISANDO A TRANSFERIBILIDADE PARA *Physalis angulata L.* (SOLANACEAE)

Banca examinadora

bolo nacuado. Edna Profa. Dra. Edna Lobo Machado (orientadora) Universidade Federal do Recôncavo da Bahia (UFRB)

qualle Caldes teriles Mª Manoela Caldas Santos

Universidade Federal do Recôncavo da Bahia (UFRB)

Prof. Dr. Ricardo Franco Cunha Moreira Universidade Federal do Recôncavo da Bahia (UFRB)

> CRUZ DAS ALMAS DEZEMBRO-2019

Agradecimentos

É, parece que tá chegando ao fim, o medo que antes sentia parece ter sido vencido, mas eu não chegaria até aqui sem todo o apoio que me deram. Então queria agradecer a todos que fizeram parte da minha caminhada, e que de alguma forma sempre vão se lembrar de mim, pois vou lembrar de vocês.

Agradeço a Deus por me sustentar em todos os momentos difíceis que passei, mas ainda assim venci.

Agradeço imensamente aos meus pais Núbia Glei Martins de Andrade Rocha e ao meu pai Normande Nunes Rocha, por sempre me impulsionarem a não desistir, e a ser cada dia mais forte, e saber lidar com as adversidades, mesmo em momentos que a vontade de desistir gritava mais alto. Obrigado a vocês dois, minhas noites não seriam as mesmas sem a velha frase, "Boa noite meu filho, que Deus te guie, ilumine, abençoe e livre de todos os "males", amém!".

Um agradecimento muito especial a minha Professora orientadora Edna Lobo Machado, por ter me dado uma chance e apostado em um sucesso que ainda não sei se alcancei, mas espero alcançar, por todo o nosso esforço. Obrigado por desenvolver em mim esse amor pela biologia celular que é a melhor disciplina do mundo. E por sempre depositar essa confiança que me faz até acreditar em mim, as vezes.

Obrigado a equipe de professores da UFRB que me ajudaram nessa jornada, espero me reencontrar com cada um de vocês em breve e poder contar minhas próprias experiências.

Agradeço aos meus colegas de turma, na verdade mais que colegas, amigos, que levarei pra vida toda. Que tornaram meus dias mais leves e sempre estiveram ao meu lado. Em especial, agradeço a três amigos, que só eu sei o quanto me ajudaram, obrigado Tais Arrais, Ruana Chaves e Manoela Caldas, por serem meus anjos da guarda em todo esse percurso corrido.

Agradeço aos meus amigos Vitor Lucas e Bruna Bispo, que vieram comigo e voltarão comigo, mostramos o que é uma verdadeira amizade, e sempre estiveram presentes em momentos tristes e momentos felizes, e que em momento algum me abandonou, até na hora de engordar junto estaremos unidos, pois é assim que somos.

Pra não me estender mais, agradeço a todos que não cheguei a citar aqui, e acredite, são muitos, por cada experiência que me proporcionaram e muito sucesso pra todos nós.

ROCHA, Lincon Mathias Andrade, DESENHO DE PRIMERS SSR (SIMPLE SEQUENCE REPEAT) PARA REGIÕES GENÔMICAS DO TOMATEIRO (SOLANACEAE) VISANDO A TRANSFERIBILIDADE PARA *Physalis angulata L.* (SOLANACEAE)

Universidade Federal do Recôncavo da Bahia, Cruz das Almas, 2019. Orientadora: Prof.^a Dra. Edna Lobo Machado

RESUMO

O presente estudo buscou desenvolver marcadores moleculares do tipo SSR (simple sequence repeat) a partir do vasculhamento do genôma do tomateiro (Solanum lycopersicum), espécie pertencente a familia das solanaceae, visando sua possível aplicação na espécie Physalis angulata, espécie bastante conhecida pelos seus benefícios alimentícios, medicinais e comerciais. Com o auxilio de ferramentas de bioinformática de um banco de dados foi possivel desenvolver marcadores microsatelites a partir do genoma seguenciado do Tomateiro, estas sequências estão depositadas no GenBank do National Center for Biotechnology Information (NCBI), a partir delas foram desenhados primes no aplicativo Websat. Ao todo foram geradas 1000 módulos de marcadores SSRs, aos quais tiveram sua qualidade aferida pelo aplicativo NetPrimer. Dentre esses marcadores, foram selecionados 120 primers classificados como ótimos dentro dos parâmetros utilizados. Dentre as regiões microssatélites analisadas do tomateiro, houve uma predominância de reptições: dinucleotídeos 43,26%, com motivos predominates de AT/TA em 79,91%; trinucleotídeos com 36,77% e hexanucleotídeos com 11,60%. Os primers desenhados apresentaram uma concentração média de CG% de 46,32%, classificados como ótimo na literatura. Esse estudo reforça a importância da utilização de ferramentas de bioinformática no vasculhamento de genomas já sequênciados, enfatizando dentre outras aplicações o desenvolvimento de marcadores, alem de ser uma alternativa para estudos genéticos de espécies cujo genôma ainda não foi sequenciado, permitindo uma possibilidade de transferibilidade entre espécies relacionadas contribuindo dessa forma para o estudo de variabilidade genética destas.

Palavras-chave: Marcadores microssatélites, espécies correlatas, bioinformática

ROCHA, Lincon Mathias Andrade, **SSR PRIMERS (SIMPLE SEQUENCE REPEAT) DESIGN FOR TOMATOAN (SOLANACEAE) GENOMIC REGIONS FOR TRANSFERIBILITY FOR** *Physalis angulata L*. (SOLANACEAE)

Universidade Federal do Recôncavo da Bahia, Cruz das Almas, 2019. Orientadora: Prof.^a Dra. Edna Lobo Machado

ABSTRACT

The present study aimed to develop SSR (simple sequence repeat) molecular markers from the tomato genome (Solanum lycopersicum), a species belonging to the solanaceae family, aiming at its possible application in *Physalis angulata*, a species well known for its benefits. food, medicinal and commercial products. With the help of bioinformatics tools from a database it was possible to develop microsatellite markers from the sequenced Tomato genome, these sequences are deposited in the National Center for Biotechnology Information (NCBI) GenBank, from which they were drawn primes in the Websat application. . In all, 1000 SSR marker modules were generated, which had their quality assessed by the NetPrimer application. Among these markers, 120 primers classified as optimal within the parameters used were selected. Among the analyzed microsatellite regions of tomato, there was a predominance of replications: dinucleotides 43.26%, with predominant AT / TA motifs in 79.91%; trinucleotides with 36.77% and hexanucleotides with 11.60%. The primers designed had a mean concentration of CG% of 46.32%, classified as excellent in the literature. This study reinforces the importance of using bioinformatics tools in the search of already sequenced genomes, emphasizing among other applications the development of markers, besides being an alternative for genetic studies of species whose genome has not yet been sequenced, allowing a possibility of transferability between genomes. related species thus contributing to the study of their genetic variability.

Keyword: Related species, microsatellite markers, bioinformatics

SUMÁRIO

1.	INTRODUÇÃO	
2.	MATERIAL E MÉTODOS	
2	Recuperação de regiões genômicas de <i>S. lycopersicum.</i>	13
2	.2 Identificação das regiões microssatélites	13
3.	RESULTADOS E DISCUSSÃO	
4.	CONCLUSÃO	
5.	REFERÊNCIA	
6.	ANEXO	

1. INTRODUÇÃO

A <u>S</u>olanaceae é uma família de plantas reconhecidas mundialmente, compreendem um pouco mais de 3000 espécies. Dentre tantas espécies o tomate (*Solanum lycopersicum L.*) é um dos vegetais mais cultivados no mundo, para fins comerciais, seja para consumo in natura, cozido ou processado (PADMANABAHN et. al, 2016, RODRIGUES et. al., 2019). A família das solanáceas ainda apresenta espécies bastante conhecidas como batata, pimentão, berinjela e tabaco.

O tomateiro (*Solanum lycopersicum*) e uma hortaliça apreciada e cultivada em praticamente em todas as regiões do Brasil (Figura 1) (TAKARASHI et al., 2015). O Brasil está entre os 10 maiores produtores de tomate do mundo, entre os anos de 2010 à 2017 a produção de tomate pelo Brasil foi em média aproximadamente 4,2 milhões de toneladas (FAO, 2019).

Figura 1: Solanum lycopersicum (Tomateiro). Fonte: Patro (2013)

A grande escala de produção e os benefícios da hortaliça fizeram com que diversos estudos genéticos surgissem ao seu respeito. E graças ao sequenciamento completo de seu genoma foi possível avançar em estudos de variabilidade genética e melhoramento genético, pois a partir do DNA sequenciado é possível criar iniciadores específicos para identificação de regiões ricas em microssatélites (MACHADO, 2013). Outra espécie pertencente à família solanácea e de grande relevância para estudos moleculares é *Physalis angulata L.* (Figura 2). Esta espécie é um arbusto e pode ser encontrada em todo o mundo em regiões tropicais e subtropicais (SUN et. al., 2011). A espécie não é nativa do Brasil, mas já passou por um processo de naturalização e possui uma ampla distribuição geográfica, podendo ser encontrada em diversas fisionomias vegetais (FLORA DO BRASIL, 2019).

Figura 2: Physalis angulata L. Fonte: Patro (2014)

O gênero *Physalis*, apresenta cerca de 90 espécies já descritas (MARTÍNEZ, 1998), que destacam-se por sua extrema importância econômica e biológica, estudos abordam um composto a fisalina, que é capaz de tratar e/ou curar doenças como malária, reumatismo, hepatite, asma (ADAMS et al. 2009) além de tratamentos, anti-inflamatórios e antinociceptivos (CHIO, HWANG, 2003), atividade antimicrobiana (LOPES et al., 2006), anticancerígena (RIBEIRO, 2002), revelando-se espécies promissoras que deveriam ser tratadas como um recurso genético de grande potencial (CHIO E HWANG, 2003; BASTOS, 2006; SUN et. al., 2011; SILVA et. al., 2018; RIVERA, 2018; MEDINA-MEDRANO et al., 2012).

Entretanto, a carência de estudos moleculares resulta na baixa existência de marcadores moleculares para o gênero *Physalis*, o que limita o avanço em estudos de diversidade e variabilidade genética da espécie (WEI; HU; YANG; YANG. 2012). Com o advento da Biologia Molecular e sequenciamento de genomas, estudos para desenvolvimento e aplicação de marcadores moleculares são importantes para informações sobre a variabilidade genética interpopulacional dentro do gênero (MEDINA-MEDRANO et al., 2012).

É certo que o número de pesquisas envolvendo estudos genômicos vem crescendo constantemente, e para que não haja redundância de informação entra as pesquisas científicas, foi-se necessário a criação de bancos de dados, os quais servem para armazenar sequencias de DNA, genomas inteiros, proteínas dentre outros produtos de estudos genômicos. O NCBI (National Center for Biotecnology Information) é um exemplo de banco de dados central de informações genômicas (OLIVEIRA et. al., 2011).

São a partir desses bancos que *Primers* podem ser desenvolvidos a partir da sequência do genoma de espécie que desejar estudar (OLIVEIRA, 2015). As regiões de interesse no genoma podem ser selecionadas através de programas de bioinformática, como o GeneFisher (Giegerich, Meyer, Schleiermacher, 1996), SSR locator (MAIA et al., 2008), Websat (MARTINS et. al., 2009), Genome-wide Microsatellite Analizing Tool (GMATA) (WANG; WANG, 2016). Seja qual for o programa utilizado, é necessário que a sequencias estejam em formato FASTA, que se trata de representar em texto as bases de nucleotídeos.

Um exemplo de marcador molecular amplamente utilizados em espécies vegetais é o marcador SSR. Este marcador permite identificar os níveis de variação das regiões microssatélites que se encontram dentro do genoma, tais regiões consistem em repetições de nucleotídeos simples, e apresentam como principal vantagem a alta variabilidade que é capaz de detectar (BECERRA et al., 2010).

A utilização desses programas tornou-se uma alternativa barata e eficiente na identificação de regiões microssatélites uma vez que se conhece o genoma estudado, por isso a crescente tendência em se utilizar sistemas de analises de dados disponibilizados na WEB, ao qual será necessário apenas a infraestrutura computacional e um acesso à internet, além do que sites que apresentam esse sistema de banco de dados são constantemente atualizados possibilitando o uso de versões sempre recentes (MALONE et al., 2006).

Segundo Martins et al. (2009), o acesso aos programas desenvolvedores costumam ser gratuitos, o Websat utiliza como programa localizador de SSR o TROLL pois este seleciona as regiões mais uteis para microssatélites. As sequencias encontradas são coloridas de amarelo e sublinhadas, ao clicar em

uma delas o programa gerador do primer projeta um par de primers flanqueadores do SSR.

Os microssatélite são curtas repetições no DNA, estão distribuídos amplamente pelo genoma e são dentre os marcadores moleculares, os mais polimórficos (WEBER, 1999, MORGANTE; HANAFEY; POWELL, 2002).

Esses marcadores se mostram eficientes na análise de estudos que envolvem a diversidade genética de espécies, e por isso são amplamente utilizados (BENOR, 2008). Estes podem ser classificados segundo o número de nucleotídeos que possuem, sendo eles, mono, di, tri, tetra, penta e hexanucleotídeo (GIEGERICH; MEYER; SCHLEIERMACHER, 1996).

Entretanto os marcadores microssatélites tem alto custo e longo tempo de desenvolvimento, pois há uma série de etapas que precisam ser cumpridas para desenvolver *primers* específicos além do que uma mão de obra capacitada (OLIVEIRA et al., 2006; BECERRA, 2010; WEBER, 2016).

Entretanto quando se tem conhecimento do genoma da espécie é possível desenvolver esses marcadores por um baixo custo (VARSHERNEY; GRANER; SORRELLES, 2005).

Segundo Kalia et al. (2010), a transferibilidade entre espécies pode acontecer dentro de um mesmo gênero ou até da mesma família. Isso ocorre principalmente devido a presença dos êxons no DNA, que se manteve durante a evolução pois apresenta alto grau de conservação entre as espécies.

A transferibilidade já foi feito entre os níveis de espécie>gênero>família, em animais e plantas. Nos animais os resultados de transferibilidade são melhores dentro do nível de gênero, mas apresenta sucesso mesmo em nível de família, entretanto, nas plantas difere-se a taxa de tansferibilidade dentro dos gêneros que apresentam taxa de sucesso de 60% para eudicotiledônia enquanto para dicotiledônia 40%, já entre gêneros a taxa de transferibilidade é de 10% para eudicotiledônia e nem um registro apresentado para monocotiledônea (BARBARA et al, 2007; BUSO et al., 2016). Isso não impedem que estudos sejam feitos, uma vez que estudos recentes no desenvolvimento e validação de marcadores microssatélites a partir de ferramentas de bioinformática mostraramse bastante positivos (FERREIRA et al., 2012; MACHADO, 2013; BUSO et al., 2016).

Assim, o genoma do tomateiro, que já está sequenciado e disponível do GenBank, pode ser utilizado para desenho de *primers* SSR para serem aplicados em *P. angulata, estudos* tem revelado que é possível a trasferibilidade de marcadores microssatélites entre espécies ou entre gêneros (MENDES, 2017).

Estudos corroboram com a possibilidade de transferibilidade entre o tomateiro e o gênero *Physalis*. No trabalho desenvolvido por Wei e colabradores (2012), foram utilizados 97 marcadores moleculares, dentre eles 25 eram do tipo SSR, que se mostraram compativeis, demostrando que há regiões genômicas semelhantes (conservadas) entre *Solanum lycopersicum* e *Phisalis*. Entretanto, são poucos estudos envolvendo o desnvolviemto de marcadores microsatelites a partir do genoma do tomate, como também estudos em relação a transferibilidade de outros marcadores para o genero *phisalis*.

Portanto o presente estudo objetivou a utilização da Bioinformática como ferramenta para o desenvolvimento de primes utilizando o genoma de *Solanum lycopersicum*, visando a transferibilidade para *Physalis angulata L.*, afim de avaliar a variabilidade genética e contribuir com o melhoramento genético e estudos de diversidade genética da espécie.

2. MATERIAL E MÉTODOS

2.1 Recuperação de regiões genômicas de S. lycopersicum.

Foram utilizadas as sequências do genoma do tomateiro, que estão armazenadas no GenBank do National Center for Biotecnology Information NCBI (National Center for Biotecnology Information, 2019) em formato FASTA para a identificação das regiões microssatélites.

2.2 Identificação das regiões microssatélites

A identificação das regiões genômicas contendo os microssatélites foram feitas utilizando o aplicativo Websat (MARTINS et. al., 2009), que se trata de um programa capaz de reconhecer as sequencias do genoma no formato FASTA, e identificar as regiões SSR de acordo com os paramentos desejados.

Os parâmetro adotados para a identificação das regiões SSR foram os seguintes: SSRs compostos por motivos dinucleotídeos, com no mínimo de 7 repetições por motivo; 5 repetições para tri, tetra e pentanucleotídeos; e SSR composto por hexanucleotideos, com no mínimo três repetições por motivo, assim como no trabalho de Machado e Silva (2013).

Com a finalidade de realizar uma posivel padronização das reações de PCR, forma utilizados os seguintes critérios na seleção dos pares de iniciadores: (i) o produto final da amplificação deveria estar no intervalo de 150 a 300 pares de bases (pb), que é um tamanho compatível com eletroforese em géis de poliacrilamida a 7% corados com nitrato de prata; (ii) os tamanhos dos iniciadores deveriam estar entre 19 a 22 pares de base (pb); (iii) a porcentagem de Guania e Citosina (CG) deveria estar no intervalo de 40 a 60%; (iv) a temperetura de melting (Tm) deveria estar entre 55 a 62°C e com diferença máxima de 1°C entre os iniciadores de cada par.

A qualidade do desenho dos iniciadores, que flanqueiam as regiões microssatélites, foi verificada por meio do aplicativo web NetPrimer

(http://www.premierbiosoft.com/netprimer/). Os mais adequados foram selecionados e são recomendados para síntese.

3. RESULTADOS E DISCUSSÃO

Mil de sequências microssatélites foram identificadas no genôma do tomateiro após o vasculhamento dos 12 cromossomos da espécie, sequências disponíveis no GemBank para análise.

Desse total, observou-se a ocorrência dos diferentes tipos de repetições, os quais os SSRs de dinucleotídeos foram os mais abundantes (48,26%), seguido dos trinucleotídeos (36,77%) e hexanucleotídeos (11,60%). Já as repetições de tetranucleotídos e pentanucleotídeos se mostraram pouco presentes em genoma de tomateiro (1,77% e 1,60%, respectivamente) (Figura 3). Resultados similares foram encontrados por Gupta et al. (2010) e Falcão et al. (2004). Esses pesquisadores trabalharam também com a espécie Solanum lycopernicum e mostraram que a porcentagem de dinucleotideos, trinucleotídeos e hexanucleotideos também foram maiores, entretanto apresentaram mais trinucleotídeos de dinucleotídeos. regiões de que As sequências tetranucleotídicas e pentanucleotídicas ainda foram menos frequentes, não apenas em estudos na espécie de Solanum lycopernicum, mas também em espécies florestais de Quercus rubul (fagaceae) (FILIZ; KOC; SAKINOGLU, 2012) e Eucalyptus globulus (Myrtaceae) (ACUNÃ et al., 2012).

Figura 3. Porcentagem de repetições microsatélites no genoma do tomateiro.

Foram selecionados desenhos de 120 pares de iniciadores SSR, sendo 10 sequências de cada um dos 12 cromossomo (Anexo 1). Os iniciadores apresentaram uma porcentagem média de GC igual a 46,32%. Segundo Queiroz (2017), porcentegens de GC abaixo de entre 40% à 60% na composição de primers são ideais. Resultados semelhantes foram encontrados por Machado e Silva (2013), com concentração de GC média de 47,29% em especie de mamoeira.

Dentre os pares de iniciadores selecionados para tomateiro, foi observado grande diferença na abundância relativa aos motivos de repetições específicas. O motivo de maior abundância foi o de AT/TA (79,63%), seguido de CT/TC (9,26%), AG/GA (5,56%), GT/TG (3,70%), AC/CA (1,85%) (Figura 4). Motivos de repetições CG/GC não foram encontrados no genoma do tomateiro. Maior frequência de AT/TA seguido de CT/TC e AG/GA, também foram encontrados por Gupta (2010) em seu estudo também com tomate. Benor (2008) também confirmou a predominância de motivos de AT/TA seguido de GA dentre as sequências de dinucleotídeos mais comuns em plantas.

Figura 4. Distribuição dos motivos de repetições de dinucleotideos dos SSRs em tomateiro.

No estudo denvolvido por Maia et al. (2009), os motivos de CG/GC nas espécies de Solanaceae foram completamnete ausentes, dando indício que esse tipo de repetição pode ser pouco comum.

0 motivos de Trinucleotídeos abundantes foram mais ΑΑΤ/ΑΤΑ/ΑΤΤ/ΤΑΑ/ΤΑΤ/ΤΤΑ (31,91%),seguido de CCT/CTC/CTT/TCC/TCT/CTT (25, 53%),AAC/ACA/ACC/CCA/CAC/CAA AAG/AGA/AGG/GGA/GAG/GAA (17,02%),(8,51%) е GTT/GTG/GTT/TTG/TGT/GTT (8,51%) (Figura 5). Resultados semelhante foram obtidos por Maia et al. (2009).

Figura 5. Distribuição dos motivos de repetições trinucleotideos de SSRs em tomateiro.

Foi obtido apenas 1 motivo de tetranucleotídeo, TTAA. E dois motivos de pentanucleotídeos TATTA e TTTAG estão presentes em proporções iguais, respectivamente, 50% cada. Em motivos SSRs de hexanucleotídeos foi observado maior frequência dos motivos GATTAT/AAGATG/ATGATA (37.5%) (Figura 6). As frequências de tetranucleotídeos e pentanucleotídeos foram

menos frequêntes também para as famílias Brassiicaceae, Solanaceae e Poaceae (MAIA et al., 2009).

Figura 6. Distribuição dentre os motivos de hexanucleotideos em SSR de tomateiro.

4. CONCLUSÃO

Assim, o presente estudo contribui com um aumento significtivo no número de primers SSR de tomateiro para possível transferibilidade em *P. Angulata*, espécie de extrema importância alimenticia, nutricional e farmacêutica.

Os resultados obtidos trazem uma ideia de organização de genoma em *Solanum lycopersicum* bem como o uso de estratégias para estudos genético de plantas e possível transferibilidade de uma espécie modelo para a espécie que se deseja estudar.

Dentre os microssatélites selecionados observou-se predominância dos dinicleotídeos, trinucleotídeos e hexannucleotídeos. Dentre os motivos mais frequentes observasse que há predominância de AT/TA visto que é bastante comum em genomas de plantas.

5. REFERÊNCIA

- ACUÑA, C. V., FERNANDEZ, P., VILLALBA, P. V., GARCÍA, MARTÍN N., HOPP
 H. E., POLTRI, S. N. M. Discovery, validation, and in silico functional characterization of EST-SSR markers in Eucalyptus globulus. Tree genetics and genomics. Vol. 8, pags. 289-301, 2012
- ADAMS, M.; BERSET, C.; KESSLER, M. Medicinal herbs for the treatment of rheumatic disorders – A survey of European herbals from the 16th and 17th century. Jounal of Ethnofarmacologi. Vol. 121, pags. 343-359, 2009.
- BARBARÁ, T., PALMA-SILVA, C., PAGGI, G. M., BERED, F., FAY, M. F., LEXER, C. Cross-species transfer of microsatellites **Molecular Ecology**, Vvol.16, pags.3759–3767, 2007
- BASTO G. N. T.; SANTOS A. R. S.; FERREIRA V. M. M.; COSTA A. M. R.; BISPO C. I.; SILVEIRA A. J. A.; NASCIMENTO J. L. M. Antinociceptive effect of the aqueous extract obtained from roots of *Physalis angulata L.* on mice. Journal of Ethnopharmacology, Vvol.ume 103, pages 241-245. 2006
- BASTOS G. N. T.; SILVEIRA A. J. A.; SALGADO C. G.; PICANÇO-DINIZ D. L. W.; NASCIMENTO J. L. M. *Physalis angulata* extract exerts antiinflamatory effects in rats in inhibiting different pathways. **Journal of Ethnopharmacology**, Vol.volume 118, pages. 246-251. 2018
- BECERRA E. M. V.; RUIZ R. M.; ANDADE H. G. Marcadores genéticos aplicados al mejoramiento genético vegetal. Estudios y propuestas para el medio rural. 1° edicion. 2010
- BENOR, S., ZHANG, M., WANG, Z., ZHANG, H. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. Journal Genetics and Genomics, vol. 35, pages 373-379, 2008
- BUSO, G. S. C., CARVALHO, N., LEITE, P. H. S., CANELA, F. M., SOUZA, J., DUSI, D. M. A., TOGAWA, R. C., AMARAL, Z. P. S., CHIARI, S., CARNEIRO, V. T. C. Transferibilidade de primers microssatélites desenhados de sequencias expressas de Brachiaria Brizantha para B. decumbens e B. humidicola. **Comunicado técnico 202**, novembro, 2016.
- CHIO E.; HWANG J. Investigation of anti-inflammatory and antinociceptive activites of *Piper cubeba, Physalis angulata* and *Rosa hybrida*. Journal of Ethnopharmacology, vol.ume 89, pages 171-175. 2003.

- FALCÃO C. L., PAPAS, M. C. R., LOURENÇO, R. T., ALENCAR, M. M., BATISTA, A. R. S., PAPAS JR, G. J. Desenvolvimento e mapeamento de microssatélites derivados de ESTs em *Eucalyptus*. Circular Tecnica 32, Brasilia DF, Dezembro, 2004
- FAO, 2019. Disponível em http://www.fao.org/faostat/en/#data/QC/visualize-Acessado em: 25/11/19
- FERREIRA, M., LIRA, I. D. S., de AQUINO, D. A. L., PASSOS, L., da SILVA, M. L., & ARAÚJO, C. D. L. Seleção de bucha vegetal para produção de esponjas. In *Embrapa Semiárido-Artigo em anais de congresso (ALICE)*. In: CONGRESSO BRASILEIRO DE RECURSOS GENÉTICOS, 2., 2012, Belém, PA. Anais... Brasília, DF: Sociedade Brasileira de Recursos Genéticos, 2012.
- FILIZ, E., KOC, I., SAKINOGLU, F. C. In silico EST-SSRs Analysis in UniGene of *Quercus robur* L. **Research in Plant Biology**, Vol. 2(6), pags.: 01-09, 2012.
- Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 21 Out. 2019.
- GIEGERICH, R.; MEYER, F; SCHLEIIERMACHER, C. GeneFisher: software support for the detection of postulated genes. In: INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, 4.; 1996. Proceedings... BethesdaMD: NCBI. pags. 68-77, 1996. Disponível em: http://www.ncbi.nlm.nih.gov/ pubmed/8877506>. Acesso em: 27/11/2019
- GUPTA, S. K., BANSAL, S., VAYDIA, U. J., GOPALAKRISHNA, T. Development of EST-derived microsatellite markers in mungbean [*Vigna radiata* (L.) Wilczek] and their transferability to other *Vigna* species. *Indian J. Genet*. ,Vol. 72 pags.: 468-471, 2012
- GUPTA, S., TRIPHATI, K. P., ROY, S., SHARMA, A. Analysis of unigene derived microsatellite markers in family solanaceae. **Bioinformation**. Vol. 5, pags.113-121, 2010
- ISERTE, J. A.; STEPHAN, B. I.; GOÑI, S. E.; BORIO, C. S.; GHIRINGHELLI, P... D. LOZANO, M. E. Family-specific degenerate primer design: a tool to design consensus degenerated oligonucleotides. In: Biotechnology Research International. 2013. Disponível em: http://www.hindawi.com/journals/btri/2013/383646/>. Acesso em: 27 de novembro 2019.

- KALIA, R. J.; RAI, M. K.; KALIA, S.; SINGH, R.; DHAWAN, A.K. Microsatellite markers: an overview of the recent progress in plants. **Euphytica**. Vol. 177, pags.309–334, 2010.
- LOPES, D. C. D. X. P., FREITAS, Z. M. F., SANTOS, E P., TOMASSINI, T. C. B. Atividades antimicrobiana e fototóxica de extratos de frutos e raízes de Physalis angulata L. **Revista brasileira de farmacologia**. Vol. 16, pags 206-210, 2006.
- MACHADO, E. L., SILVA, S. A. Desenho e validação de marcadores microssatélites SSR para mamoneira. Pesquisa. agropecuaria.
 Bbrasileira., Brasília, Vvol. 48, n.11, pags.1457-1463, 2013.
- MAIA, L. C., SOUZA, V. Q., KOPP, M. M., CARVALHO F. I. F., OLIVEIRA, A. C. Tandem repeat distribution of gene transcripts in three plant families. Genetic and molecular biology. Vol. 32, 4, pags. 822-833, 2009.
- MAIA, L. C.; PALMIERE, D. A.; SOUZA, V. Q.; KOPP, M. M.; CARVALHO, F. I. F.; OLIVEIRA A. C. SSR Locator: Tool for Simple Sequence Repeat Discovery Integrated with Primer Design and PCR Simulation. Hindawi Publishing Corporation. International Journal of Plant Genomics. Article ID 412696, 9 pages, 2008. doi:10.1155/2008/412696
- MALONE, G., ZIMMER, P. D., MENEGHELLO, G. E., BINNECK, E., PESKE, S.
 T. Prospecção de genes em bibliotecas de cDNA. R. Bras. Agrociência, Pelotas, Volv. 12, n. 1, pages. 07-13, jan-mar, 2006.
- MARTINS W. S.; LUCAS D. C. S.; NEVES K. F. S.; BERTIOLI D. J. WebSat A web software for microsatellite marker development. **Bioinformation**, volume 3, pages. 282-283,. 2009.
- MEDINA-MEDRANO J. R.; ALMARAZ-ABARCA N.; REYES-MARTINEZ A.; BERIADA-BERNAL L. G.; DELGADO-ALVARADO E. A.; RIVEIRA-RODRIGUES D. M.; COBELEDA-VALESCO M. El gênero *Physalis* en durango: Revisión de la distribuición y uso. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional. 2012.
- MENDES L. M. O.; PEREIRA C. C. O.; SILVEIRA R. D. D.; CUNHA P. C. R.; MENEZES I. P. P.; Transferibilidade de marcadores microssatélites nucleares de digitaria exilis para d. Insularis. VI Congresso Estadual de Iniciação Científica e Tecnológica do IF Goiano. Campos Urutaí. 2017. ISSN: 2447-2344 - DOI: 10.29327/15229, 2017.

- MORGANTE, M., HANAFEY, M., POWELL, W., "Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes," *Nature Genetics*, vol. 30, no. 2, pagesp. 194–200, 2002.
- NATIONAL CENTER FOR BIOTECNOOLOGY INFORMATION. **NCBI shotgun assembly sequences**. Available at: https://www.ncbi.nlm.nih.gov/assembly/GCF_000188115.4> accessed on 23 de outubro de 2019.
- OLIVEIRA, E. J.; PÁDUA, J. G.; ZUCCHI, M. I.; VENCOVSKY, R.; VIEIRA, M. L. C. Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology, Volv. 29, n. 2, pags. 294-307, 2006.
- OLIVEIRA, E. M. M.; OLIVEIRA, T. C.; LIMA, I. S.; SANTOS, T. F., Utilização de ferramentas de bioinformática na construção de primers para detecção de sequencias especificas de DNA. Rio de Janeiro. Embrapa agroindústria de alimentos, 2011.
- OLIVEIRA, E. M. M.; OLIVEIRA, T. C.; SOUZA, A. M., SANTOS, T. F., LIMA, I.
 S., Desenhos de *primers* degenerados através de bioinformática.
 Comunicado técnico 208, Rio de Janeiro, 2015.
- PADMANABHAN P.; CHEEMA A.; PALIYATH G. Solanaceous fruits including Tomato, Eggplant, and Peppers. Encyclopedia of food and health, Vol. 5, pages 24-32, 2016.
- PATRO, R., 2013. Tomate- Solanum lycopersicum. Disponivel em https://www.jardineiro.net/plantas/tomate-solanum-lycopersicum.html acessado em: 18/ 12/2019.
- PATRO, R., 2014. Fisalis-Physalis sp. Disponivel em < https://www.jardineiro.net/plantas/fisalis-physalis-sp.html> Acessdo em: 18/12/2019.
- QUEIROZ, J. A. S., ALVES, L. S., DALL'ACQUA, D. S. V., SOUZA, L. F. B. Desenho e Validação de Primers In Silico para Detecção do Vírus Sincicial Respiratório Humano. Revista FIMCA. Vol.lume 4, pags. 17-30. Número 1. Dezembro, 2017.
- RIBEIRO, I.M.; SILVA, M.T.G.; SOARES, R.D.A.; STUTZ, C.M.; BOZZA, M.; TOMASSINI, T.C.B. Physalis angulata L. antineoplasic activity, in vitro, evaluation from it's stems and fruit capsules. **Revista Brasileira de Farmacologia**. n. 12 (Supl. 1), p. 21-23, 2002.
- RIVEIRA D. E.; OCAMPO Y. C.; CASTRO J. P.; BARRIOS L.; DIAZ F.; FRANCO L. A.; A screening of plants used in colombian traditional medicine the

revealed anti-inflamatory potential of *Physalis angulata* calyces. **Journal** of **Biological Sciences**. Vol. 26, pags. 1758-1766, 2018.

- RODRIGUES A. A. Z.; QUEIROZ M. E. L. R.; NEVEZ A. A.; OLIVEIRA A. F.; PRATES A. H. F.; FREITAS J. F.; HELENO F. F.; FARONI R. L. D.; Use of ozone and detergent for removal pesticides and improving storage quality of tomato. **Food Research international**, Vol.ume 125. 2019.
- SILVA B. J. M.; PEREIRA S. W. G.; RODRIGUES A. P. D.; NASCIMENTO J. L. M.; SILVA E. O. *In vitro* antileshmanial effects of *Phisalis angulata* root extract of *Leshmania infantum*. Journal of Integrative Medicine, Vvol.ume 16, pages. 404- 410. 2018.
- SOUZA F. P.; LIMA E. C. S.; LEITE N. G.; UREA-ROJAS A. M.; YAMACHITA A. L.; PANDOLFI V. C. F.; LOPERA-BARRETO N. M. Transferibilidade de iniciadores microssatélites hierólogos em *Bricon goldingi*. Ciência Rural, Vvol. 48, n° 11. 2018.
- SUN L.; LIU J.; LIU P.; YU Y.; MA L.; HU L. Immunosuppression effect of withangulation A from *Physalis angulata* via heme oxygenase 1dependent patwais. **Process Biochemistray**, Vol.ume 46, pages., 482-488. 2011.
- TAKAHASHI K; CARDOSO A. I. I. 2015. Produção e qualidade de mini tomate em sistema orgânico com dois tipos de condução de hastes e poda apical.
 Horticultura Brasileira. Vol. 33, pags. 515-520, 2015. 33: 515-520 DOI http://dx.doi.org/10.1590/S0102-053620150000400018
- VARSHNEY, R.K.; GRANER, A.; SORRELLS, M.E. Genic microsatellite markers in plants: features and applications. **TRENDS in Biotechnology**, Vol v.23, nº1, 2005
- WANG, X.; WANG L., GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing. Front. Plant Sci. Vol. 7, pag.:1350,. 2016.
- WEBER, G. G. transferibilidade de marcadores microssatélites entre espécies de asteraceae e sua utilidade na obtenção de dados genéticospopulacionais. 2016.
- WEBER, J. L. Informatimativeness of human (dC-dA)n. (dGdT)N Polymorphisms. **Genomics**, Vol.7, pags. 524-530, 1990.
- WEI, J., HU, X., YANG, J., YANG, W. Identification of Single-Copy Orthologous Genes between Physalis and Solanum lycopersicum and Analysis of

Genetic Diversity in Physalis Using Molecular Markers. **PLOS ONE**. Vol. 7, pags. 01-09, 2012.

6. ANEXO

Tabela 1. Iniciadores SSR desenhados a partir de sequencias do genoma do Tomateiro (*Solanum lycopersicum*) depositadas no GenBank/NCBI

Crom			Sequencia 5'-3'	Tm (°C)	GC%	Motivo	Produto	Tipo de repetição
	Q11	Left	CCCACCCCTCTCTCTCTAT	56,53	57,14		270	Disuslastídas
	311	Right	CTTCCAACACAGCCAAATCTT	57,05	42,86	(10)12	219	Dilucieotideo
	612	Left	ATTGGGAAAGGAGGAAGCA	56,97	47,37		250	Tripueleetédee
	312	Right	TGAACGACACATCTCTTTAGGG	57,09	45,45	(GAA)6	250	THILdeolodeo
	SI3	Left	AGACGAAAGGATGAGAGAAAAC	54,86	40,91	(AT) ₂₄	044	Disuslastídas
	313	Right	GTGGAGATTACGAACAAAGACA	54,66	40,91		244	Diracleotideo
	SI4	Left	CATAGGGTGGAAATAATGAGGC	58,33	45,45	(GATTAT)6 e (TATTA)5	150	Hovanuelootídoo
		Right	ACCTTTGGATTCTCACTTGTGG	58,34	45,45		, 130	Tiexanucleotideo
	SI5	Left	TTGTTAGGTTGTGGAGTCTGAT	54	40,91	(ΤΛ)-	280	Disuslastídas
Crom 1		Right	GCCTTTTAGTAGGATTCTTGGT	54,75	40,91	(17)9	200	Diridcieotideo
CIOIII I	SIG	Left	ACTTTACCAACAACCATCCCC	58,07	47,62		278	Tripucleotódeo
	510	Right	AAAAGGTGGAACAGACGAGG	56,62	50	(110)8	210	Thildcleotodeo
	917	Left	TTAGCCACTCTATATCTTTGCC	54,16	40,91		255	Dipucleotídeo
	017	Right	GTGAGGAAGGAAGAGGAAGA	56,09	50	(01)10	255	Diridcieotideo
	SIR	Left	CGCTATTTTGCTACTTTGTTCG	58,02	40,91	(Δ Τ)	274	Dipucleotídeo
	010	Right	ATAAATCTCCCTCCCCTAAACG	58,82	45,45	(71)15	214	Dirideleotideo
	SIQ	Left	GTAAATACATTGCCCCTTCAC	54,31	42,86	$(T\Delta)_{ac}$	252	Dipucleotídeo
	010	Right	CTCGGATTAGTCATTTCAACTC	53,72	40,91	(173)20	202	Diridoleotideo
	SI10	Left	GAAATAAGAGGTGCCAATGA	52,72	40	$(T\Delta\Delta)_c$	271	Tripucleotódeo
	0110	Right	CTCTACGGAGGAGGTGTATGT	53,41	52,38		211	Thirdeleotodeo
Crom 2	SI1	Left	CGTCTTTCTGTATTCTCCTCCG	58,53	50	(TA) ₂₄ e(GA) ₇	284	Composto Dinucleotídeo
		Right	GATTTTGTTTGTGTCCTGATGG	57,14	40,91			

512	612	Left	TCACAAACCTTTACGAACTTGC	57,58	40,91		247	Havanualaatidaa
	512	Right	ACCAATAACCCAATAAGACCCA	58,12	40,91	(ACTAAA)3	247	Hexanucleolideo
	012	Left	AAGCCGAAGTCAAAGCCATAG	59,11	47,62		204	
	515	Right	ACTTGAAAGGTTGGGAACTTGA	58,24	40,91	(CGA)5	204	Thhucleotideo
	014	Left	TTCTGCTGTTTGGTCTTTTCAC	57,32	40,91		171	Disuslastídas
	514	Right	GTGTGTGTGTGTGTGTGTGTGT	54,27	50	(AT)14	174	Dinucleotideo
	SIE	Left	GAAATCCGAATCACTCTTGAC	53,74	42,86		206	Tripueleetidee
	313	Right	ATTATTTGAGGTGGACTGGAGC	57,77	45,45	(TAT)12	200	Thildcleotideo
	SIE	Left	TTCCCGTAAGGATTTTCACTCA	59,18	40,91	(T - A) ₀	202	Hovenuelootídoo
SI0	310	Right	TCGTACCCACTAAAGTCAAGGC	58,9	50	(15A)3	203	Hexallucieotideo
	SI 7	Left	GCTTGATCTTGAATCTGGTGGT	58,36	45,45		289	Hexapueleotídeo
	017	Right	GCTCGAAGCCCTTGATTTC	57,3	52,63	(01100A)3	209	hexandcleotideo
	SIS	Left	CATCATCTCCATCATCATCGTC	57,35	45,45		17/	Tripucleotídeo
	S19	Right	GAGCGGTAGTGGTAGCAGTTTC	58,63	54,55	(110)5		Thildcleotideo
		Left	CTACAAGCGACAAAACGCATAC	58,26	45,45	$(T\Delta)_{\alpha}$	205	Dinucleotídeo
		Right	GGGAGAACTGCCCTTATCAACT	59,32	50	(17)9		Diracleotideo
	SI10	Left	GTCGCATATTGAGGAGACTGAT	56,08	45,45	$(T\Delta)_{0}$	۵) ₀ 260	Dinucleotídeo
	Ono	Right	AAATGACGAAAATGACAGGC	55,14	40	(17)9	200	Diracicottaco
	SI1	Left	TGACGATGTTCCTCTCCTCTTT	58,09	45,45	(ΔT) ₄₂	161	Dinucleotídeo
	On	Right	CAACAACCCTTCCCTTCCA	57,89	52,63	(71)13	101	Diracicottaco
	SI2	Left	GTAGAAGAGGAGAGGAGGCGA	57,87	57,14		290	Composto Dinucleotídeo
	012	Right	CCCCAAAAGGATGTCAGAAC	56,74	50	(///)/ 0 (///)8	200	
Crom 3	SI3	Left	TCCCTATTTCTCTGGATTTGAC	55,91	40,91	(AT)。	176	Dinucleotídeo
Cioin 5	010	Right	AATCTTGCTGCTATTGCTGAC	55,08	42,86	(/ (1))8	170	Diridolotidoo
	SI4	Left	GGAGACTGTTGCTATTGACGG	57,32	52 38		217	Tripucleotídeo
	017	Right	ATTGTCCTGGCTGAGAACCTT	57,92	47,62		217	
	SI5	Left	TTAGGCTGCTCATTTTCCAAG	57,7	42,82	(CAA) ₅	287	Trinucleotídeo
	0.0	Right	CCGACTTGTGTGGGATAGAAA	57,62	47,62	(0/1/)5	201	

-	SIG	Left	TGTGATTGGGATTAGTGTGCTC	57,59	45,45	(ΤΔ)-	200	Dipucleotídeo
	010	Right	TGTGATTGGGATTAGTGTGCTC	57,59	45,45	(17)/	233	Dinucleotideo
	SI 7	Left	AGGTTCTGTCTGTTTGGCTTTT	57,73	40,91		300	Tripucleotídeo
	017	Right	TCTCGTGTTGTATCCCTCCTTT	58,16	45,45	(101)5	500	Thirdcleolideo
	SIR	Left	GCCATTCAAAGAGAGTATCAGC	56,21	45,45	$(CT)_7$	207	Dinucleotídeo
	010	Right	CTTCGTGTTGTTGTTTGTCGT	56,05	42,86	(01)/	231	Dindeleotideo
	SIQ	Left	AAGACGAGGCAAGGGGTAG	56,71	57,89		286	Hexanucleotídeo
	013	Right	TTGTGTTTCATTTTCTCCCG	56,03	40	(101701)3	200	Tiexanucleotideo
	SI10	Left	TAACCTGCGATTCTTGCTCTC	57,45	47,62	(TA)	205	Dinucleotídeo
	0110	Right	TTCACTCATCTCCACGGTAAAA	57,53	40,91	(17)19	235	Dindeleotideo
	SI1	Left	AGACGCACATCTACAGCCATC	57,56	52,38	(ΔT) ₄₇	257	Dinucleotídeo
	011	Right	TGTTTGTGTTTGGGTTTGGA	56,89	40	(71)17	201	Dirideleotideo
	SI2	Left	GGATGGAGGCTAAGAGGAGAA	57,77	52,38	$(T\Delta\Delta)_c$	277	Trinucleotídeo
		Right	CCTTGTGATGCTGGTTTCTTT	57,05	42,86		211	Thirdecollaco
	SI3	Left	CACAACCCCAGATGTCAAAAT	57,22	42,86	(CTT)₅	276	Trinucleotídeo
	010	Right	AGTATGAGAGACCCTGGAAAGC	57,05	50	(011)5	210	Thirdecollaco
	SI4	Left	CCCCTTATCTCATCATCCACA	57,16	47,62	(AT) ₇	(ΔT) ₇ 231	Dinucleotídeo
	014	Right	TTACCAGCAAGCGAGTCATCT	57,68	47,62	(/ (1)/	201	Diridolocideo
Crom 4	SI5	Left	CCCACGCAACTCATCAGAC	56,4	57,86	(AT) _o	249	Dinucleotídeo
	010	Right	GGAGATTCAAAGCATCAACCA	57,58	42,86	(/11/9	240	Diridolocideo
	SIG	Left	TCTCATTTTGGAGTTGGTCA	53,32	40	(AT) ₁₂	267	Dinucleotídeo
	010	Right	GACAAGGAATGGCGTAACA	53,9	47,37	(11)12	207	Diridolocitado
	SI7	Left	AGGATTTGATACGAATGCGA	55,74	40	(CTT)₅	296	Tripucleotídeo
	011	Right	TTTTGTTTAGGCATCAGGTAGC	57,09	40,91	(011)3	200	
	SI8	Left	ACGCACTCTATCCTCTCCCA	56,93	55	(AT) ₇	298	Dinucleotídeo
	0.0	Right	AAGACAACCTCATCGGGTAAAG	57,93	45,45	(***)/	290	Diridolocidoo
	SI9	Left	TCTCATTTTGGAGTTGGTCA	53,32	40	(AT) ₁₂	267	Dinucleotídeo
-	0.0	Right	GACAAGGAATGGCGTAACA	53,9	47,37	(/ 11 / 12	201	

	SI10	Left	CATGTCCTTTTGCTACCAGAT	54,55	42,86		200	Hexanucleotídeo
	0110	Right	CTTTCTTCCATCTTGCTCGT	54,57	45	(ATOTAT)5	200	Tiexandcleolideo
	SI1	Left	GCATTAGAGAAAGCGAAAGGC	59,01	47,62		220	Trinucleotídeo
	011	Right	GAATGGACTTGACGAAACTGC	57,23	47,62	(117)5	223	Thindeleotideo
	SI2	Left	CCAATACAGGAGCGTTACCAC	57,41	52,38	(ATT)₅	242	Trinucleotídeo
	012	Right	TGGTGTAATAGGGGTCAGCAA	58,11	47,62	(711)5	242	Thindeleotideo
	513	Left	TCCCCTCCTCCTCTTTATTG	57,83	47,62	(TTΔ) ₅	159	Trinucleotídeo
	010	Right	TGTTATTGCTTGTGTTGTGGG	56,92	42,86	(117)5	155	Thindeleotideo
	SIA	Left	GGAGGAGGATAAGGAGTGAACA	57,56	50		265	Hexanucleotídeo
	014	Right	TAGCACTTCCACCACACACAA	57,04	47,62	(010171)4	205	Tiexandcleolideo
Crom 5	SI5	Left	GCACCTACCAAATAACCCCA	57,53	50	(TTTTTC) ₂	250	Hexanucleotídeo
	010	Right	CCTGCCATTGTCTCTTTGTGT	57,5	47,62	(11110)3	200	nexandecolideo
	516	Left	CCATCTTTGAGGTCTTCCGTA	56,95	47,62		180	Hexanucleotídeo
	010	Right	TGCTGCTAACTTTGGTCTGGT	57,64	47,62	(0100//0)3	100	nexandecolideo
	<u>SI7</u>	Left	ATCTGCTTTTGCTGTGTGCTT	57,78	42,86	(ΔT) ₁₂	100	Dipucleotídeo
	017	Right	GGGTGCCTTAGAGTTAGCCTG	58,53	57,14	(71)13	100	Diridecolideo
	SI8	Left	TTTCTTGGCATAGGATTCGG	57,91	45	(TTAA)₅	205	Tetranucleotídeo
	010	Right	CCTGTAAGTGCTTGGTGGCTA	58,16	52,38	(11/0/)5	200	
	SI9	Left	GATTTCTCCTTGCTACTGCTAA	54,15	40,91	(TA) ₁₀	237	Dinucleotídeo
	010	Right	TAATCCAACCACACCTGAAA	53,54	40	(17,010	201	Diridoleotideo
	SI10	Left	TGAGCAGCCACCTACTACATT	55,13	47,62		283	Trinucleotídeo
	Ono	Right	CATCATCATAACACCTCCCAA	55,55	42,86		200	
	SI1	Left	TTGGGCATTCTATCACTTTG	53,63	40	(TA) ₁₀	224	Dinucleotídeo
	On	Right	AGAGGATGGGTAGATGTGAGA	53,3	47,62	(17,910		
Crom 6	SI2	Left	AATGGGGTTTGCGAAGAATAG	58,83	42,86	(TA) ₁₇	263	Dinucleotídeo
Cloin C	012	Right	CTGGACAACACGACACAATGA	57,08	47,62	(17,917	203	
	SI3	Left	GCGTGATGACACTCTCCAAAT	58,83	42,86	(AT) ₁₃	204	Dinucleotídeo
-	010	Right	ACAATCAAACCACTGAGCCAC	57,08	47,62	(717)3	204	Diridolotidoo

	SIA L	Left	CTAAAGCAGAAAAGAAGCCCG	58,18	47,62		254	Tripucleotídeo
	014	Right	ACTGTTCATTATCCCCATCGC	59	47,62	(AAG)5	234	Thracleolideo
	SI 5	Left	GGTGGGGAGAAGATAGAGAGG	56,98	57,14		286	Tripucleotídeo
	010	Right	GGCTTGTTTGGTGATGTATTTG	57,58	40,91	(ATT)/	200	Thracleotideo
	216	Left	CCTCCTCAGCCCCTACTTATG	58,27	57,14		202	Tripucleotídeo
	310	Right	CCCAGTAAACAACAAAGGCAA	58,13	42,86	(011)6	292	Thracleotideo
	SI 7	Left	ATGAATGTGGAAGGACTGACG	57,17	47,62		267	Hexanucleotídeo
	017	Right	CATAGGCATAGGCACCATTTG	58,39	47,62	(171900)5	207	Tiexanucleotideo
	518	Left	AGCACTACAAAGGGAACGGAT	58,16	47,62		17/	Tripucleotídeo
	010	Right	GGTCTCAAAGAAATGGCACAA	57,71	42,86	(100)6	174	macleotideo
	SIQ	Left	ATCATTCTCGTGGCATTTCAG	57,63	42,86	(TC) ₇	280	Dinucleotídeo
	013	Right	GAGACACCCCACACTCAAGAA	57,02	52,38	(10)/	200	Dinucleotideo
	SI10	Left	CAACCTCAGCATCCTCTTCAG	57,26	52,38		242	Trinucleotídeo
	0110	Right	TTCTTCATCCAGCAAAGCCTA	57,92	42,86	(041)5	272	Thracleolideo
	S 1	Left	TGCTCCTTTGACCCTATGAAC	56,91	47,62	(ΔΔT) ₇	200	Trinucleotídeo
	On	Right	TTGACCCTTTTACCGTTTCTTC	58,24	40,91	(7771)/	200	macicoliaco
	SI2	Left	TTATTATCCTTTATCGCTCGCC	58,79	40,91	(Τ Δ) ₀	TΔ) ₀ 207	Dinucleotídeo
	012	Right	TAGGGAGGAGGGAAGAGAGAG	56,88	57,14	(17)0	201	Dirideleotideo
	513	Left	GGAAGGTTCATTCATTCACGA	57,39	42,86	(ΔT) ₇	282	Dinucleotídeo
	010	Right	CCGAGGATGTTGGAAGTTAGA	56,95	47,62		202	Dirideleotideo
Crom 7	SI4	Left	GACATAAGAAGAAGAGAGCGTG	53,95	45,45	$(\Delta T)_{10}$	258	Dinucleotídeo
	014	Right	AGAAACTCGCACACCTGAA	53,35	47,37	(71)10	200	Dirideleotideo
	SI5	Left	TCATCCGAGTAAAGTGCGAAT	57,58	42,86	$(T\Delta)_{\tau}$	235	Dinucleotídeo
	010	Right	GGGAAAATAGGAAAAGGTGAGG	59,11	45,45	(1797	200	Diridolootideo
	SIG	Left	TCCTCACCTTTTCCTATTTTCC	57,34	40,91	$(CT)_7$	181	Dinucleotídeo
	010	Right	TGTCTCATAGCCTTATCCCTCA	56,79	45,45		101	Diridolootideo
	SI7	Left	CTCACCTTTTCCTATTTTCCC	55,34	42,86		179	Tripucleotídeo
-	017	Right	TGTCTCATAGCCTTATCCCTC	53,74	47,62		179	

	SIS	Left	ACTCCAAAACTTCACCAACCC	58,13	47,62		243	Hexanucleotídeo
	010	Right	GCCAACAAAGAAAACAAACACC	59,19	40,19	(01111)3	243	Tiexandcleolideo
	SI 0	Left	TTCAACCCTTCTTATTCACAGC	58,13	47,62	(AT)-	210	Dipuelectídeo
	319	Right	TTTCAAGGTCAAACGAGCC	59,19	40,91	(AT)/	210	Diridcleotideo
	SI10	Left	CCTTCTATTATTGGATGTGGTG	54,41	40,91	$(T\Lambda)_{\alpha}$	264	Dinucleotídeo
	3110	Right	CATTTTCCTTTTGTGGGTG	53,54	42,11	(17)9	204	Diridcleotideo
	Q11	Left	ATGAAGACGGTGATGAGGATG	57,02	47,62		231	Tripucleotídeo
	011	Right	TAACAAGATACTCCGTGCCCA	58,28	47,62	(GAC)5	251	Tindcleotideo
	S 12	Left	GGATGAGGATGAGGATGATGA	56,67	47,62		258	Hexanucleotídeo
	512	Right	GCACCAAAATAGCAGACCAAA	58,14	42,86	(111AG)5	250	T IEXANUCIEOLIDEO
	613	Left	GGACGATTGGGAGTGGAAG	57,24	57,89	$(T\Delta)_{\alpha}$	296	Dinucleotídeo
	010	Right	TCGGAACCCTCTTCTCTTTGT	58,08	47,62	(17)8	290	Diridcieotideo
	SIA	Left	TTAGCACAACATTGGCACTCA	57,52	42,86		200	Tripucleotídeo
	014	Right	TACCCTCCCCATACCCTACAC	58,02	57,14	(AAC)5	200	Tindcleotideo
	SI 5	Left	AAGAGACATCTGGCATTGGG	57,21	50		275	Tripucleotídeo
Crom 8	010	Right	AAGGAGAGGGATAGGTGGGTT	58,46	52,38	(110)6	215	Tindcleotideo
CIOINO	516	Left	TGGTGGTGGTGGTAATAATGG	58,06	47,62		20/	Tripucleotídeo
	510	Right	GCATCATCTTCACGGTCATTT	57,41	42,86	(770)6	234	Tindeleolideo
	SI 7	Left	GTGAAGGTGAAGGTGAAGGTG	56,79	52,38		215	Hexanucleotídeo
	017	Right	CCTCTTGCTACTTGAATCCCC	58,2	52,38	(110/10)/	210	nexanacieotideo
	SIR	Left	TGTCATAGGGAGGCGAGAGA	57,83	55	$(T\Delta)_{\alpha}$	208	Dinucleotídeo
	010	Right	CCCTCTTCCATTCTTGCTCA	57,57	50	(17)21	200	Dirideleotideo
	210	Left	GGAATGAGGGGTAGTAATGTCG	58,1	50	$(\Delta T)_{c}$	270	Dipucleotídeo
	013	Right	AACAGCAAATCCACCACAAGT	57,05	42,86	(~1)9	215	Dirideleotideo
	SI10	Left	CCCCTGGAAAATGGTGATAGT	58,15	47,62	$(GAA)_{r}$	210	Trinucleotídeo
	0110	Right	TCCAACCAAGAACATACCCAA	57,88	42,82	Conno	210	Tindocolideo
Crom 9	SI1	Left	AGAGCCTTTGTTGGAAATGGA	58,98	42,86		279	Hexanucleotídeo
Crom 9	011	Right	CCCTCTTCTTGCGTTTTCTGT	58,85	47,62	(AT OATA)S	213	

	612	Left	TTCCGCTTCTCCTTGTTGATA	57,75	42,86		224	Hovenuelectídeo
	512	Right	GAAACAGCATAAAGTGACGGC	57,68	47,62	(ATTACC)3	224	Hexanucleolideo
	612	Left	GTGAATGGACTGGGGTAGACA	56,98	52,38		240	Dipuele et i de e
	513	Right	GTTGTTGTTGTTGTGGCTCCT	57,41	47,62	(CA)7	240	Dirucieotideo
	CI 4	Left	CCTTTGTCAGCCTCCCTATTT	57,97	47,62		275	Tripuelectídeo
	314	Right	GGCTTTGGGACAGAAATGAA	57,57	45	(110)5	215	THILCLEOUGEO
	SIE	Left	ATCTGGTCATTTGAAGGGCTC	58,22	47,62		252	Tripudactídeo
	313	Right	TTAGCAAGCAGAAGAGCGAAG	58,14	47,62	(110)5	252	THILLEOLIGEO
	516	Left	GCTGCTGCCTCTTTGTCATT	57,87	50		276	Tripucleotídeo
	310	Right	TCCCCATAAGCATCTTCACAC	57,44	47,62	(101)5	270	Thindcleotideo
	917	Left	CAACAACCCCATTTCACATA	53,89	40		270	Trinucleotídeo
	517	Right	TTTTCCCTCTCTCGTGTGTAG	54,59	47,62	(110)6	210	Tindcleotideo
SI	SI 8	Left	GTATGTTGGTGGTGGTGATGTT	57,01	45,45		274	Composto Dinucleotídeo e Hevanucleotíao
	010	Right	CCTCAACTCGTTCTCATCGTC	57,03	52,38		214	
	210	Left	TTGGGAATGACGCATAGTTGT	58,07	42,86		200	Hexanucleotídeo
	013	Right	CTGAAGATGGGGAAAGGAGAT	57,42	47,62	(101111)3	200	Hexandcleolideo
	SI10	Left	GTAAACAAAGCAAAAGCCCATC	58,81	40,91	(Δ Τ) ₀	288	B Dinucleotídeo
	Ono	Right	TCATTTCACGGTAGAGGTTCG	57,8	47,62	(71)8	200	Dirideleotideo
	SI1	Left	CCCACCATTACAAGTCACCAC	57,45	52,38	(TTC)e	218	Trinucleotídeo
	On	Right	TTTGTTTGCTACCTTTCACGG	58,3	42,86	(110)6	210	Tindeleotideo
	SI2	Left	AGACGCTGCTGAACTATGCTA	55,7	47,62	(ΔT) ₇	262	Dinucleotídeo
	012	Right	CAATGTAGAAATGAGGGGAGAA	56,37	40,91	(///)/	202	Diridolotideo
Crom 10	SI3	Left	CTTCCCATTCATCCTTTTGCT	58,61	42,86	(TTC)₅	276	Trinucleotídeo
	010	Right	TATGTGTGTGGGGGATTTGGTT	57,53	42,86	(110)3	210	
	SI4	Left	GGTTTGTCTTTGCCTTGGTA	55,34	45	(TA) ₁₀	300	Dinucleotídeo
	014	Right	TCTACGATTGGTTGCTAAGTTG	55,42	40,91	(17,1)10	000	Diridolotideo
	SI5	Left	CGTCGGAAACTGAATCTCTTG	57,49	47,62	(GGT)e	164	Trinucleotídeo
	00	Right	ATGCCTGAAAAGTCCATTGTG	57,58	42,86		104	

	SIG	Left	TTCTTTTCCACTCAACCCTCC	58,34	47,62		290	Dipuelectídeo
	310	Right	CCCACTACAGGTAAACCCCAT	58,15	52,38	(AT)11	200	Dinucleotideo
	017	Left	ATTAGCCTTGGAAGAAGTGGG	57,97	47,62		007	Tripuele etíde e
	517	Right	TGATGGTACAGGTGGTCAAAGA	57,81	45,45	(TAT)7	237	Thhucleotideo
	C10	Left	GGAGTTTCTTCTTGGCTGATG	56,59	47,62		201	Dipuelentíden
	310	Right	TTTGTTTCTCTCCTTTGTGCC	57,18	42,86	(01)7	201	Dinacleotideo
	510	Left	CGGCTGCTGTTACTATGTTCTT	57,05	45,45	(ΔΤΤ)_	208	Tripueloctídoo
	319	Right	CGATTTCTGATTCGGCTTTA	55,92	40	(ATT)7	290	Thildcleotideo
	SI10	Left	CACAACCGCAACACAACAAT	57,33	45		210	Dipuelectídeo
	3110	Right	CCCCTCCCTTCATTATTTCAC	57,92	47,62	(AG)9	210	Dinacleotideo
	SI1	Left	ATTATGCGGGTTTGGACGA	58,66	47,37	(ΤΔ)-	223	Dipucleotídeo
	511	Right	CAGAGTGGGTTTAGGGAGGAA	58,42	52,38	(17)/	225	Dinacleotideo
	SI2	Left	CTCCTCCACCCTCACCTGTA	56,96	60		260	Trinucleotídeo
	012	Right	TTTTGGATGCTCGTATGATGG	58,59	42,86	(070)5	209	Thildleotideo
	513	Left	ATCATACGAGCATCCACAACC	57,27	47,62		214	Trinucleotídeo
	010	Right	GTAAGTGGGAGGAGGAGGAGA	57,33	57,14	(070)5	214	Thildleotideo
	SI4	Left	TCTCCTCCTCCTCCCACTTAC	57,33	57,14	(CCA)5	170	Tripucleotídeo
		Right	TATGGAATGACTGGTGGTGGT	57,3	47,62	(004)0	170	
Crom 11	SI5	Left	TGAGGCTAAGGATGGATGAGA	57,21	47,62	(ATT)11	208	Trinucleotídeo
	010	Right	CCATTTATTGTGTGTGCGTGT	56,74	42,86	(/(11))11	200	
	SIG	Left	GCAAGGGAGTTGAGGGTCTAT	57,56	52,38	(GTT)6	259	Trinucleotídeo
	010	Right	CACATAAGACGCATAAGGGGA	57,92	47,62	(811)0	200	
	SI7	Left	ATCCACAGCACACACTCAACA	56,53	47,62	(ACA)5	254	Trinucleotídeo
	017	Right	TCTGTCTCGTCTTCTTCACTGG	56,9	50		204	
	SI8	Left	AAAACAGGTGGGTCCAAAACT	57,9	42,86	(TC)8	163	Dinucleotídeo
	010	Right	GATAAAATAAAAGGCGTCGGAG	58,33	40,91	(10)0	100	Diriticleotideo
_	SI9	Left	TATCACCAACAAAACGAAGGC	57,97	42,86	(ACC)5	271	Trinucleotídeo
	010	Right	CCGAATCTACAAAGAGGAGCA	57,31	47,62	(//00/0	27.1	

	SI10	Left	CTTGTGGGATTTCACTGGGTA	57,44	47,62		227	Tripuclostídos
	3110	Right	TTGTATGAGTTCCAAGAGGCTG	57,27	45,45	(GTT)5	231	Thhacleotideo
	Q11	Left	CCTCCATCAACAAAGGAAAGA	56,9	42,86	(T \ \)5	102	Tripuclostídos
	311	Right	GCTCAAGCAAAACCAAGATTAG	56,8	40,91	(174)5	195	Thracleotideo
	512	Left	CTGCTACTGAAACGAAACCCA	58,11	47,62	(AT)22	166	Dinucleotídeo
	512	Right	CATCACACTCAGACCCCACTC	57,1	57,14	(AT)22	100	Dinucleotideo
	513	Left	TTATCGCAACGGAATCTGAA	56,78	40	(ΔT)11	10/	Dinucleotídeo
	010	Right	TGACAAATGAACCAGAACCCT	56,9	42,86		134	Dindeleolideo
	SI4	Left	CCAAAAGGCATTCAAAGACAG	57,7	42,86	(GA)8	263	Dinucleotídeo
	On	Right	TCAAATGGAAGTGTGGGTAAGA	57,35	40,91	(07)0	200	Dindeleolideo
	SI5	Left	ACACCATCGCAATACACAC	51,25	47,37	(TA)8	300	Dinucleotídeo
Crom 12	010	Right	ACTGGAGGTTGGTTTTGTTT	53,74	40	(17.)0		Dindolootideo
	SIG	Left	AACCAACGCTTCACAAATCAC	57,68	42,86	(ACAGTG)3	263	Hexanucleotídeo
	010	Right	GAGGTGGAGATACGGTGTTGA	57,17	52,38	(//0//0/0)0		
	SI7	Left	TACGCAATGGAGAAGAAAAGG	57,53	42,86	(TTTA)5	262	Tetranucleotídeo
	017	Right	TATTGGTGAAAGTCCGAAAGC	57,32	42,86	(1117.)0	202	
	SI8	Left	ATCTCATCATTTTGTCAGCC	52,05	40	(ΔΔΔΔΤΔ)3	266	Hexanucleotídeo
	010	Right	TTCTACCTCCGTCGTTGAT	52,49	47,37	(//////////////////////////////////////	200	
	SI9	Left	GTATCCTTCAATGCTTTCCCA	57,01	42,86	(AAC)5	159	Trinucleotídeo
	010	Right	GCATACACACTACCCTTCCCA	57,45	52,38	(////0)0	100	madeonaco
	SI10	Left	CTGATTGCCCTCATTATTGGA	57,74	42,86	(TAT)5	177	Trinucleotídeo
	0110	Right	CTCTTCTGTCTCACCTGCCAT	56,56	52,38	(171)0	177	